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LETTER TO THE EDITOR 

Study of the steady state of a two-sp.ecies annihilation 
process with separated reactants 
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AbstracL The steady-state behaviour of the irreversible reaction A + B + C with separated 
reactants in one dimension is studied. when currents J of A and B panicles are directed towards 
each other by m e m  of an analytical approach. The interpanicle distance distribution in the 
reaction fmnl ts derived. Rxing the reaction constanl, and far Ixge J ,  the pmcess is limited by 
reaction and the average interparticle distance at the reaction h o t  ( 1 ~ s )  behaves as I A B  - J - ' .  
In the limit I -+ 0 the pmcess is limited by diffusion and the behaviour Ins - J-'D holds. 
Ihe crossover between both regimes is well described a n a l y t i d y  and t k  crossover current IS 
found U, be Jc = &. These mults are in excellent agreement with Monte Carlo simulation 
results. 

Reaction-diffusion processes play an important role in many aeas  of science, such as, for 
example, chemistry, heterogeneous catalysis, biology, astrophysics. solid state physics, etc. 
These processes have an impact in both fundamental and applied research. Furthermore, 
they give rise to very rich and complex phenomena which are in most cases difficult to 
describe and analyse. This is in part due to their nonlinear nature as well as because they 
take in far from equilibrium situations. In most cases a numerical approach is the only 
possible way to investigate these processes. In fact, writing the corresponding set of partial 
differential equations that need to be solved is frequently rather difficult. Also, intrinsic 
fluctuations are known to play a relevant role in many cases l1-31. The simplest example 
is the anomalous kinetics observed in the A + B + C reaction-diffusion process. A 
considerable theoretical effort has been devoted to the study of simple monomer-monomer 
diffusion-limited reaction processes where the reactan- are initially distributed at random 
(random mixing) [ I ,  2, 4-61, In contrast with the numerous theoretical studies which are 
available in this field, very few experimental results have already been reported [6]. 

Recently, it has been realized that diffusion-reaction systems in which the reactants 
are initially separated, are more suitable for experimental studies [7-91 than reactions 
starting with randomly dis'uibuted particles. This is mainly because of the difficulties 
of implementing initially uniformly mixed distributions of the reactants. Consequently, 
theoretical interest in these systems has increased because now it is possible to test numerical 
and analytical predictions. 

-~ 
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In the present work we have studied the irreversible reaction A + B -t C with separated 
reactants in one dimension. We have adopted the following approaches: 

(i) instead of studying the kinetics of the process [IO, 1 I ]  our attention is focused on the 
stationary behaviour which arises when opposite currents of A and B particles are present; 

(ii) since in many physical and chemical systems the rate of reaction is not only simply 
limited by diffusion but also by reaction, we have introduced the probability of reaction 
between species which accounts for the actual energy barrier that particles must overcome 
in order to get close enough to react; and 

(iii) we have undertaken the problem using both numerical simulations and an analytical 
approach. The steady state of the reaction has been studied previously by Ben-Naim er al 
[I21 using a mean-field description which is expected to hold above the critical dimension 
d = 2. Also the scaling behaviour of the steady state formed by opposing currents of A 
and B species has been analysed by Lee et 01 [13] using renormalization-group techniques. 

We will now provide a brief description and some numerical results. The model used 
for the A + B --f C reaction is one of particles undergoing discrete-time random walks on 
a discrete one-dimensional lattice of length L. We have considered the steady state reached 
when equal currents J of A and B particles are directed towards each other. 

Let us describe the model and introduce some parameter definitions [14, 151. 'At each 
time step any of the L sites of the lattice is randomly chosen. The following situations may 
appear: 

(i) if the site is occupied, the particle tries to jump to any of both nearest-neighbour 
sites with equal probability h Ar, where i. is the jumping rate and Ar is the size of the time 
step. The jumping rate is related to the diffusion coefficient D and the lattice spacing Ax 
by h = D / A x Z .  If the nearest-neighbour site is occupied by a second particle, the jump is 
not performed; and 

(ii) if the chosen site is one of the extremes of the lattice (site numbers -L /2  or LIZ),  
and if the site is not occupied, a particle ( A  or B. respectively), is introduced into the 
lattice with probability j ,  this probability is related to the current J .  The average number 
of particles that get into the lanice in a time step is J Al.  In the same time step we also 
consider the reaction process. If we have a pair of A and B particles in the reaction front 
at nearest neighbour they react with probability p = j? Af,  where /3 is the reaction rate. 
The reaction constant k is defined as k = j? Ax. After each time step, time is increased by 
r -+ r + Ar, Multiple occupancy of lattice sites is forbidden, regardless of particle type. 

Figure 1 shows plots of the concentration profiles p ( x )  versus the distance, obtained 
through Monte Carlo simulations and for two values of k. Two regions can clearly be 
observed; on the one hand, close to the particle source, p ( x )  decreases linearly. This region 
is characterized by the absence of reaction events and the particle current is simply given by 

On the other hand, the second region, close to the centre of the sample, is dominated by 
reaction, i t  is very narrow for k = 1 and becomes wider when k decreases. 

We now consider an analytic approach. It is known that the reaction front in one 
dimension is described by several characteristic length scales [ 1 I], such as, for example, 
the width w of the reaction front and the position of the midpoint xy between the rightmost 
A particle (RMA) and the leftmost B particle (G~B). Another length scale relevant for the 
description of the reaction front is the average distance .!AB between the RMA and the LMB. 
So, in this section we develop an analytic approach in order to evaluate the distribution of 
interparticle distances. 
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Y) Figure 1. Plot of the density profiles of reacting 
panicles. A ( E )  at the right (left) of the lattice. for 
the stationary regime. Results obtained from numerical 
simulations with lattices of ten@ L = 100 and D = $. 
Lowercwve J = & and k =  1;uppercwve J =  & 
and k = &. The slopes close to the sources are & 
and I, respectively, in agreement with (I). The units ~~:~~ X used in the simulations are Ax = 1 and AI = 1 fL. 
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Let us define a discrete stochastic variable Pi([ )  which assumes two values: it is 1 if, 
at time f ,  RMA and LMEI particles are placed at a distance i, and is 0 otherwise. In the 
continuous limit one has x = iAx and (Pj( t ) )  = P ( x ,  ? )Ax,  where the average ( )  is taken 
over configurations and P ( x ,  f) is the distribution of distances between the RMA and the 

The method that we will use for deriving a differential equation for P ( x ,  t )  is very 
similar to the one used in [ 141 for coagulation reactions. This case with imperfect reaction 
is analysed in [16].  

The stochastic variable Pj ( f )  will change due to both diffusion and reaction events. 
Both cases are treated separately as follows. 

LMB. 

Changes due to diffusion. 
increased by At and due to all possible diffusion events, that is 

Let Pz(t + Af)di j  be the new value of Pi(t)  when the time has 

P;(t + Af)dij  Pi+,(t)ZAAt + Pi-l(t)ZhAt(l - e;([))  
+P;(t)(l -4AAt+ZAAtQi+l(t)}  (2) 

where the first term accounts for a unitary decrease of the distance due to the jumps of 
either A or B particles in opposite directions, respectively. The second term corresponds to 
a unitary increase of the distance due to particle jumps, but here one has to take into account 
that the jump of a particle may be blocked by another particle placed behind, so we define 
the variable Qi which takes the value 1 if site i - 1 is occupied by the first particle and site 
i if it is occupied by the second particle, and is 0 otherwise. The third term corresponds to 
all cases such that the distance remains unchanged. 

In the continuous limit one has ( Q i ( t ) )  = Q ( x , t ) A x  and ( P i ( t )  Qi+l(r)) = 
( P ; ( t ) ) ( Q j + , ( f ) )  = P ( x , t )  Q(x + Ax, t )Ax' .  The decorrelation of the product of P; 
and e,+, is not an approximation, it is exact due to the way we defined Q;.  Taking a 
first-order approach to Q(x + Ax, t )  = Q ( x ,  t )  + ?Ax and using the definition of A it 
follows that for the continuous limit 

This equation is exact, but, as we will see later, to solve it in the steady state we have to 
make an approximation for Q ( x ) .  
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Figure 2. Plots of Q ( x )  versus X. Simulation 
results for L = 1000 and D = 1. Upper curve 
J = & and k = &; lower C U N ~  3 = & 
and k = I. The broken lines correspond IO the 
approximation given by (8). 
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Figure 2. Plots of Q ( x )  versus X. Simulation 
results for L = 1000 and D = 1. Upper curve 
J = - and k = &; lower C U N ~  3 = & 
and k = 1. The broken lines correspond IO the 
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X approximation given by (8) 

Changes due to reaction. Let P;(t + At),,., be the new value of P;(t)  when the time has 
increased by At and due to all possible reaction events, that is 

P;(t + (4 ) 
where 6;o is the Kronecker delta and the variable Z ( t )  is defined as follows: it takes the 
value 1 if site 0 is occupied by the first particle and site i if it is occupied by the second 
particle, otherwise it takes the value 0. The first term in (4) shows that P ; ( f )  does not 
change if i # 0 because the reaction is not possible, the second term corrcsponds to a 
successful reaction and the last term is due to a failed reaction. Then one obtains 

= P;( t ) ( l  - 6;0} + Po(t)B At Z(t)  + Po(t)(l - B Att6io 

(5 )  

In the continuous limit one has (Po@) T,(t)) = (Po( t ) ) (T , ( t ) )  = P(0, f )  T ( x ,  f) Ax’, as 
before, the decorrelation of the product is not an approximation. Equations (4) and (5) are 
exact, but, to get a solvable equation we approximate T ( x ,  t )  = P ( x ,  t ) .  Finally 

T ( t )  &O ( P ; ( f  + At)},,< = Pi(r) + P&)k A i l  - Po(f )k  A t - .  
Ax Ax 

The stationary regime. 
(equation (3) )  and reaction (equation (6)), one obtains 

Adding the changes in the distribution due to both diffusion 

In the steady state one has = 0. Furthermore, the number of reactions per unit 
time is given by R(t) = kP(0 ,  t).  We call R( t )  the sysrem reaction rate; not to be confused 
with the reaction rate ,!I, which is a constant. Due to particle conservation the stationary 
current (or particle flux) J equals R, i.e. k P ( 0 )  = J .  In order to solve equation (7) a reliable 
approach to Q(x)  has to be made for the steady state. We have used the approximation 
given by 

J x  
Q ( x )  P(0)  + -- 0 2  

Numerical Monte Carlo results show that this approach holds very well close to the reaction 
front as, for example, it is shown in figure 2. 

Finally, for the steady-state regime and x z 0, we obtain 

dPfx) + 2 J P ( x )  = O .  + J ( x  + 2 D t k ) -  20- 
d*P(x) 

dx’ dx  
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Using the normalization condition l," P ( x )  dr = 1 and the boundary condition 
kP(0) = J ,  equation (9) can be solved exactly giving 

(10) 
J 

2 0  
p ( x )  = - ( x  + 2D/k)e-"(X'4DIk)/4D. 

From equation (IO) it is possible to evaluate the first moment of the distribution which gives 
the average interparticle distance at the reaction front, ihat is 

( x )  = e  

Equation (10) nicely describes the crossover between the two limiting regimes of the 
process, i.e. the case J -+ 0 (or k -+ CQ) which corresponds to the diffusion controlled 
reaction and the case J -+ 00 (or k -+ 0) which corresponds to a reaction limited process. 
The distribution of distances between particles at the reaction front obtained by means of 
the analytical calculation is compared with Monte Carlo numerical simulations in figure 3. 
The excellent agreement found strongly supports the validity of the approaches used in the 
analytical treatment. 

0.08 

0.W 

A x c 0.w 

Figure 3. Disvibulion of interparticle distances 
at the reaction front obtained using (IO) (full 
curves) and numerical Monte Carlo simulations 
(points). Results shown for D = 4. L = 1000, 
and diffemnt values of k and J :  s q u w  : k = & 

0 20 40 60 80 100 120 and J = m. (crosses) k = & and 3 = &; 
and (diamond) k = I and J = &. 
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For the diffusion-conwolled redme the distribution P ( x )  is very broad (see figure 3), so 
holds in (lo), which the typical spatial distance x becomes large and the approach x >> 

gives - ' -Jx'f4D , P ( x )  S -xe 
2 0  

Within this regime the moments of the distribution are given by 

where r is the standard gamma function. For the first moment 
( x )  - J-'1* is recovered [13]. 

narrow (see figure 3) and consequently the approach x < 
gives 

: iown result Ins = 

Within the reaction-controlled regime the typical length described by P ( x )  is very 
holds in (IO), which now 

P ( ~ )  g F e - J x l k ,  (14) k 
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Fiyrc 4. Log-log plot of the average interpmicle 
distance at the reaction front (x) versus the panicle 
current 3 evaluated for D = 1 and k = 0.01. We 
can see the asymptotic behaviours of slopes -f and 
-1 .  

Within this regime the moments of the distribution are given by 

(15) 

So, for the reaction-controlled regime the first moment now behaves proportionally to J-' 
in contrast to the behaviour J - ' t 2  characteristic of the diffusion-controlled regime. Figure 4 
shows a log-log plot of ( x )  versus the particle current J f Jc. The crossover between the 
already discussed regimes can be clearly observed. The crossover current (JJ defined as 
the intersection between the straight lines defining the asymptotic behaviour of both regimes 
is given by J, = k2frrD.  

In conclusion, the steady-state behaviour of the irreversible reaction A + B -+ C 
with separated reactants crosses over from a diffusion-limited regime, when the current 
of particles J -+ 0, to a reaction-limited regime when J -+ bo for a fixed value of the 
reaction constant k .  An analytical approach which allows us to evaluate the distribution of 
interparticle distances at the reaction front is developed, The first moment of the distribution, 
i.e. the average interparticle distance ( I A s ) ,  behaves as I A ~  - J-", with n = 1 (n = ?) for 
the reaction-controlled [diffusion-controlled) regime, respectively. The crossover current is 
found to be J, = 5. Analytical results are in good agreement with numerical Monte Carlo 
simulations. 

This work was financially supported by the Consejo Nacional de Investigaciones Cientificas 
y Tkcnicas [CONICET, Argentina), the Universidad Nacional de  Mar del Plata and 
Fundaci6n Antorchas (Argentina). 

m! - J-". ( x  ) = -  
( J / k P  

m 

I 
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